QH 541.5 .S3 M372 1981

Marine Environmental Assessment CHESAPEAKE BAY ANNUAL SUMMARY 1981

JAN 2 9 1985

U. S. Dopt. of Commerce

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Environmental Data and Information Service Center for Environmental Assessment Services

CLIMATE IMPACT ASSESSMENT UNITED STATES The Center for Environmental Assessment Services (CEAS), Marine Environmental Assessment Division (MEAD), Marine Assessment Branch (MAB), produces periodic assessments of weather impacts on economic sectors of marine environmental activity. From September 1981 through March 1982, MAB issued monthly assessments of Chesapeake Bay in the economic sectors of fisheries, recreation, and transportation. The Chesapeake Bay region served as a prototype for assessment development. We now issue quarterly assessments in order to extend the service to other marine areas within existing resource limitations.

Please send any comments or questions regarding CEAS marine assessments to the Branch Chief, NOAA/EDIS/CEAS, Marine Environmental Assessment Division, 3300 Whitehaven Street, NW, Washington, DC 20235, or call (202) 634-7379.

Front Cover Photographs

Wave Damaged Coastline - Star News Photo by J. Nesbitt Beach Scene - EPA Documerica - Hope Alexander Salt Marsh - NOAA File Photo Catch on Fishing Boat - NOAA Photo by M. Dowgiallo

September 1982

Chesapeake Bay Marine Environment - 1981 Annual Summary

Table of Contents

QH 541.5 .33

M372

1981

-

1. 1.1 1.2 1.3	List of Figures	
2.	Impact Summary	5
3. 3.1 3.2 3.3 3.4	Weather and Oceanography 6 Review of Events 6 Precipitation and Streamflow 6 Air Temperature 10 Surface Water Salinity and Temperature 16	53
4. 4.1 4.2 4.3 4.4	Fisheries25Summary of Commercial Fishing25Finfish28Shellfish29Diseases34	539
5. 5.1 5.2 5.3 5.4	Recreation	5 7 9
6. 6.1 6.2	Transportation 42 Shipping and Related Shore Activity 42 Dredging 43	2
7. 7.1 7.2	Pollution Events Summary	6

Acknowledgements

LIBRARY

JUL 1 5 2002

National Oceanic & Atmospheric Administration U.S. Dept. of Commerce

i

List of Figures

Figure	1 - Selected meteorological stations, Chesapeake Bay drainage basin	7
Figure	2 - Monthly streamflow, Chesapeake Bay tributaries, 1981 1	1
Figure	3 - Cumulative streamflow, Chesapeake Bay tributaries, 1981 1	2
Figure	4 - Locations of National Ocean Survey temperature and density stations, Chesapeake Bay	7
Figure	5 - Monthly surface water salinity anomaly, selected stations, Chesapeake Bay, 1981	0
Figure	6 - Seasonal cycle of salinity, selected stations, Chesapeake Bay, 1981	1
Figure	 7 - Monthly surface water temperature anomaly, selected stations, Chesapeake Bay, 1981	4
Figure	8 - Chesapeake Bay Bridge vehicle traffic, 1951-1981 3	8
Figure	9 - Locations of spills of oil and hazardous substances, Chesapeake Bay region	1

ii

List of Tables

-

.

Table	e 1	-	Climate impact summary, Chesapeake Bay, 1981	4
Tabl.e	2	-	Monthly total precipitation and departure from normal, selected stations, Chesapeake Bay region, 1981	9
Table	3	-	Monthly streamflow, Chesapeake Bay sections, 1980-81	13
Table	e 4	-	Monthly mean air temperature, selected stations, Chesapeake Bay region, 1981	14
Table	e 5	-	Monthly mean air temperature anomaly, selected stations, Chesapeake Bay region, 1981	15
Table	e 6	-	Monthly mean surface water temperature and salinity, selected stations, Chesapeake Bay, 1981	18
Table	e 7	-	Monthly surface water temperature and salinity anomaly, selected stations, Chesapeake Bay, 1981	19
Table	8	-	Maximum ice cover of Chesapeake Bay, 1977-1981	23
Table	9	-	Commercial landings, finfish and shellfish, 1980 and 1981 \ldots	26
Table	e 10	-	Commercial finfish landings by state and species, 1981, and total landings, 1975–1981	27
Table	e 11	-	Relative abundance index for young-of-the-year striped bass, Chesapeake Bay, 1954-1981	28
Table	e 12	-	Virginia fish kill events, 1981	31
Table	e 13	-	Commercial shellfish landings by state and species, 1981, and total landings, 1975-1981	33
Table	e 14	-	Maryland bloom events, 1981	34
Table	e 15	-	Maryland boating licenses and fees, 1977-1981	36
Table	e 16	-	Traffic volume and toll revenue, Maryland, 1980-1981	37
Table	e 17	-	Attendance and revenue, selected Maryland state parks, 1981 $$.	39
Table	e 18	-	Maryland accident statistics, recreational boating, 1970-1981	41
Table	e 19	-	Search and rescue operations, U.S. Coast Guard, 1981	41
Table	e 20	-	Export and import tonnage, Baltimore and Hampton Roads, 1976-1981	42
Table	e 21	-	Summary of dredging operations Chesapeake Bay region, U.S. Army Corps of Engineers, 1980 - present	44

Table	22	-	Spills of oil and hazardous substances by month, Chesapeake Bay region, 1981	
Table	23	-	Spills (>5000 gallons) of hazardous substances and oil, Chesapeake Bay region, 1981	48
Table	24	-	Number of spills by material type, Chesapeake Bay region, 1981	49
Table	25	-	Accidental spills of oil and hazardous substances, Chesapeake Bay, 1981	50
Table	26	-	Average daily discharge of selected sewage treatment facilities, facilities, Chesapeake Bay region, 1980-1981	

DAT	E DUE	
		1
		1

F/3422

1. Introduction

The Chesapeake Bay 1981 Annual Assessment, is a first attempt to present a synoptic view of several economic sectors and their direct and indirect relations to the physical and biological marine and atmospheric environment. The economic sectors are not independent, nor are the environmental processes.

Using research results of scientists in the fields of physical oceanography, marine biology, meteorology, political science, and economics, the Marine Assessment Branch (MAB), Marine Environmental Assessment Division of the Center for Environmental Assessment Services has attempted to give a multidisciplinary view of the Bay. Assessment is an integrative approach to a system. Data from several sectors are brought together for a single viewing. Data appear without bias. Only confirmable relationships are presented as correlations.

Relationships may appear between variables in one sector and those in another sector (e.g., climate and fisheries), but on the whole relationships between different sectors are not precise. Interactions among different sectors must exist since heavy multipurpose use of the Bay contributes to the cost of operation, maintenance, safety, and clean-up in each sector. Even where direct relationships are unclear, the presentation of data from several scientific and economic areas has value because it emphasizes the multiple use of the Bay system.

By presenting the collection of data here, we intend to stimulate further investigation by scientists and provide information to those persons responsible for usage regulations of the Bay.

1.1 Organization of the Report

The report comprises seven sections. In the introductory section we delineate the concept of marine environmental assessment embodied in this report, specify the coverage of the present report, and suggest extensions and future development for the assessment function.

In section 2 we present a summary of impacts identified for 1981. Only confirmed relationships appear as impacts.

In sections 3-7 we present in more detail the weather and oceanography, fisheries, recreation, transportation and safety sectors, and pollution events of the Chesapeake Bay marine environment for 1981. Discussions in these sections cover all information available to the Marine Assessment Branch at this time but are neither exhaustive nor definitive. The review gives a limited synoptic view of several sectors and their relationships for a single year.

1.2 Scope of the Report

The geographical area considered in the annual assessment includes the Chesapeake Bay and all tributaries in the entire drainage basin contributing to the Bay waters. We present a summary of weather and oceanographic events during 1981 over the region. Coverage is only for calendar year 1981, though regional environmental cycles in the Bay are from December through November. The calendar year serves the assessment function in tracking economic variables. Where discussion of environmental patterns or events requires reference to 1980 or to 1982 we extend coverage at those specific instances.

Four economic sectors appear in this report: fisheries, recreation, transportation, and industry. The fisheries section covers finfish, shellfish diseases, and predators. Distribution and abundance of species depends strongly on salinity and temperature regimes in the Bay which in turn relate to precipitation and air temperature and to general coastal conditions over a broader span of space and time. Harvest of the commercial species varies with climate conditions, fishing effort, and market conditions. Pollution and transportation sectors affect distribution of the fisheries species as well as harvest activity.

Recreation includes park usage, boating, Chesapeake Bay Bridge traffic, and recreational accident statistics. The recreational sector responds quickly to weather variations, but also correlates with pollution incidents and the presence of annoying or dangerous organisms in the water. The Bay is used heavily for recreation including swimming, boating, fishing, and tourism.

Transportation includes shipping, navigational aids, dredging, ice clearing and related shore activity. Through most months of the year shipping and related shore activities remain unaffected by climate or other activity. During winter, however, icebreaking requires resources to keep the Port of Baltimore operating.

Industry in this report appears only as specific events such as spills of oil and hazardous substances and sewage disposal discharge. The Bay and tributaries form a large resource for waste disposal for surrounding industry and populations. Heavy use of the Bay for transportation leads to a finite number of spills of cargo substances, some harmless, others potentially harmful.

1.3 Future Work

The Center for Environmental Assessment Services, Marine Environmental Assessment Division recognizes the need for extension of this assessment to other sectors and more detailed and rigorous analyses in those sectors already discussed. The industrial complex surrounding the Bay includes heavy manufacturing (steel, automobiles), food processing (spices, sugar), refining, shipbuilding, and chemicals. The use of water in each of these industries contributes to the quality of water entering the Bay system.

In fisheries the assessment may ultimately treat species specific problems. The analysis should treat species life stages sensitivity to environmental conditions.

Future work in the recreation sector will include assessment of sport fishing, marina usage, and sales of recreational equipment.

In transportation the detailed distribution of Search and Rescue (SAR) in categories of damage, injury, cost, and geography may enhance the usefulness of the assessment. The costs related to maintenance of navigational aids and icebreaking are of interest to port authorities.

The discharge of heated water from power generation loads the Bay system with waste energy. While local changes to the system can be measured at present, the cumulative impact of heat loading on the Bay ecosytem needs to be assessed.

Finally, the Chesapeake Bay assessment will increase in convenience to each user if sensitivity scales for impacts can be derived. For each sector or resource factor (e.g. streamflow, salinity change, temperature anomaly, wave height, number of rain days) the assessor needs to know not only if the impact is positive or negative, but the degree of impact.

]	FIS	SHE	RI	ES			RE	CRI	EAT	TIO	N	TRA	INS	SPO	RT.	AT	ION
CLIMATE EVENT	Oyster Harvest	Blue Crab Harvest	Hard Clam Harvest	Finfish Harvest	Fishing Nets	Wooden Hull Boats	Docks		Boating	Bridge Traffic	tat	Licenses and Revenues	Safety	Safety	Tug and Barge Traffic	1 Con	Draft, Hull, HP Restrictions	Operati	Structural Aids to Navig.
Precipitation deficit	+	+		+	1				+	+	+	+	+	+				+	
Jan., Feb. icing	-			-	-	-	-		-				-	-	-	-	-	-	-
Low storm activity	+	+	+	+					+	+	+	+	+	+	+				+
Low streamflow, runoff	+	+	+	+				A	±				+	-					_
High Salinities	+	+	+	+				IA						1	-	-			
Moderate summer air temp.									+	+	+	+	+	1					

+ Favorable

- Unfavorable

No abnormal effect, data unavailable, or not applicable

*

2. Impact Summary

Two major abnormal climatic events, icing and drought, occurred in the Chesapeake Bay region during 1981. Table 1 summarizes impacts of climate events by economic sector.

Low streamflow from an overall precipitation deficit contributed to higher than normal salinity, which affected distribution and abundance of sensitive finfish and shellfish species. High salinities favored populations of the commercially valuable oyster, blue crab, hard clam, and certain finfish species. Low precipitation and resultant low runoff provided favorable conditions for oyster habitat. Relatively low storm activity during warmer months allowed for normal finfish and shellfish harvest activities.

Extensive January and February icing restricted access by watermen to oysterbeds and damaged fishing nets, wooden hull boats and docks. Ice cover also affected Bay transportation by limiting tug and barge traffic and restricting vessel types.

Infrequent periods of high river flow following storm events were hazardous to recreation boaters in certain areas, but did not interrupt normal seasonal usage of rivers. Lower than normal precipitation favored all categories of recreation, especially during summer months of peak activity. Moderate summer air temperatures favored all categories of marine recreation.

3. Weather and Oceanography

During 1981 the Chesapeake region experienced extreme dryness. Low rainfall over regional river basins contributed to above normal salinities in the Bay proper, rivers, and tributary creeks.

Ice covered extensive portions of the Bay in January marking 1981 as one of the most severe since records began. With the exception of January, moderate temperatures prevailed throughout the year. Seasonally low storm activity characterized 1981.

3.1 Summary of Events

January was notable for intense cold, which resulted in 50% of the Bay being covered by ice for much of the month. The month was dry throughout the region.

February was marked by blustery cold fronts bringing heavy rain and flooding and warmer-than-normal temperatures. Both bridges over the Bay were closed at one time or another because of strong winds.

In March colder-than-normal weather and strong winds persisted, but little moisture.

Though April brought return of warmer, moister conditions, the drought persisted.

May returned colder-than-normal weather. Mid-month thunderstorms were accompanied by strong winds, heavy rain and local flooding.

June was slightly warmer and wetter than normal with local flooding and wind damage from thunderstorms. Tropical storm <u>Bret</u> touched the Virginia coast at the end of the month bringing rain and strong winds to the Southern Bay area.

July began with the last remnants of rain and wind from Bret. Later in the month a series of strong gusty squalls struck the Bay with 100 knot wind gusts recorded at South Island 21 July.

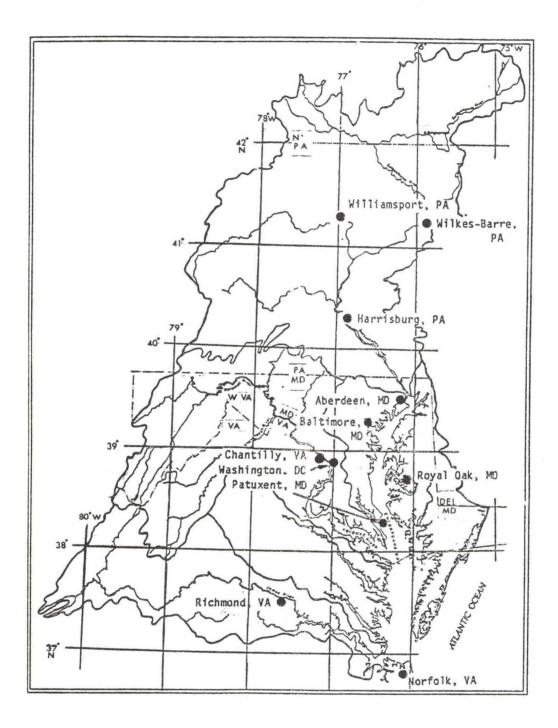


Figure 1. Selected meteorological stations, Chesapeake Bay watershed (Modified EPA map).

August was primarily cool and dry despite the effects of Hurricane Dennis just after mid-month.

September weather continued slightly cooler and dryer than normal. A tornado formed over water and struck near Crisfield 8 September, producing moderate damage.

October was windy in the first part of the month but normal in other respects.

November was slightly warmer than usual but broke records for dryness.

December brought recurrent cold fronts, colder-than-normal temperatures, and persistent northwest winds over the Bay. The Southern Bay received storm rains, but most areas continued to be drier than usual.

3.2 Precipitation and Streamflow

Precipitation data from the 11 selected stations in Figure 1 show 1981 was a dry year in the Chesapeake region. Table 2 shows January to have been an extremely dry month through the Bay area with the 11 stations more than 80% below normal for the month. The area-weighted rainfall for Maryland and Delaware was 19% below the previous record low established in 1955, and the combined December 1980 and January 1981 precipitation totals for the three stations, Baltimore, Washington, and Patuxent, were less than half previously established low amounts for the same two months.

February was wet except at Royal Oak, Richmond, and Norfolk. The three stations in Pennsylvania received more than twice normal rainfall.

March returned to very dry conditions; all stations except Norfolk fell below 50% of normal.

April through October precipitation varied over the region, but did not depart markedly from normal.

November was very dry again, the driest November on record at both Washington and Baltimore, and second driest at Royal Oak.

December showed normal precipitation for the region. The three southernmost stations recorded greater than normal precipitation.

The 1981 annual total precipitation for the 11 stations was 13% below normal. All stations of the group, except Wilkes-Barre, received less than normal precipitation for the year. Baltimore, Washington, Chantilly, and Royal Oak ended the year with less than 80% of the normal total annual precipitation. Table 2.

.

Monthly total precipitation and departure from normal, selected stations, Chesapeake Bay region, 1981.

-

.

Total precipitation Α.

Station				Pı	ecipi	Precipitation	(inches	es)					
	<u>Jan</u> .	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Annua1
Williamsport. PA	2.52	2.58	3.53	3.42	3.99	3.25	4.19	3.44	3.03	3.20	3.74		
Wilkes-Barre, PA	2.04	1.96	2.50	3.06	3.50	3.40	4.09	3.21	2.82	2.71	3.01	2.51	34.81
4	2.57	2.42	3.22	2.98	3.76	3.11	3.70	3.22	2.66	2.57	3.19		
Aberdeen, MD	2.94	2.81	3.82	3.29	3.75	3.55	4.22	3.91	3.30	2.77	3.56		
Baltimore, MD	2.91	2.81	3.69	3.07	3.61	3.77	4.07	4.21	3.12	2.81	3.13		
Washington, DC	2.62	2.45	3.33	2.86	3.68	3.48	4.12	4.67	3.08	2.66	2.90	•	
Chantilly, VA	2.84	2.61	3.48	2.96	3.68	3.61	4.12	4.25	3.29	2.74	3.06		
Royal Oak, MD	3.29	3.12	4.06	3.43	3.83	3.77	4.68	4.88	3.72	3.17	3.68		
Patuxent, MD	2.92	2.77	3.40	2.80	3.69	3.48	4.15	4.35	3.21	2.85	3.07		
Richmond, VA	2.86	3.01	3.38	2.77	3.42	3.52	5.63	5.06	3.58	2.94	3.20		
Norfolk, VA	3.35	3.31	3.42	2.71	3.42	3.62	5.70	5.92	4.20	3.06	2.94		
Station			Departure	ture in	n Percent	ent of	Norma]						
	٢	F	2		M	Ļ	1.1			+-0	Mou	Doc	Lound
	Jan.	Feb.	Mar.	Apr.	May	-unf	.Tnf	Aug.	sep.	Uct.	NOV	nec.	Tennua
Williamsport, PA	-73	+226	-76	-14	-48	70	-2	-70	-31	26	-61	-37	-12
Wilkes-Barre, PA	-69	311	-80	16	-14	1	4	-45	۳ ۱	29	-39	-15	2
Harrisburg, PA	-83	145	-68	- 7	-51	50	26	27	-17	46	-70	-21	-5
Aberdeen, MD	-87	19	-64	61	9-	35	I	-28	50	28	-77	-10	8 1
Baltimore, MD	-83	4	-69	-34	1	43	13	-54	L-	-9	-90	1	-23
Washington, DC	-85	15	-55	8	-7	-27	38	-35	-37	-37	-90	8	-21
Chantilly, VA	-86	57	-72	e	18	2	-2	-16	-37	6	-92	-29	-20
Royal Oak, MD	-82	-5	-67	21	27	-30	13	-51	19		-83	-4	-21
	-84	58	-59	63	33	19	37	-70	ς Γ	-16	-78	15	00 V
•	-/8	20	- J J	/	94	x	67-	-43	C7-	-70	-/4	10	01-
Norfolk, VA	-69	-32	-45	-17	-20	38	-11	16	-24	1	-39	86	8

-13

+3

-73

+12

-10

-33

9+

+19

+2

+8

-64

+61

-80

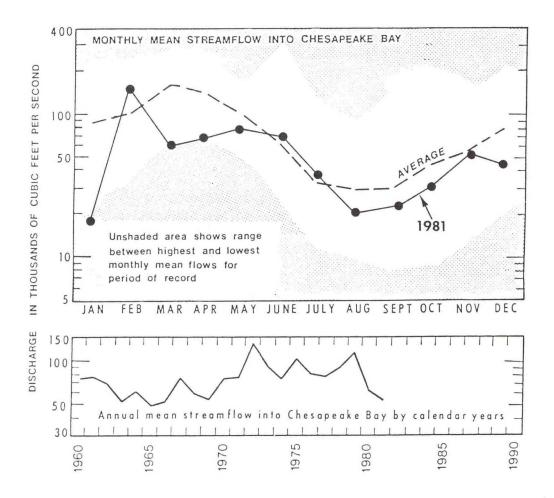
Total Region

11

11 11 11

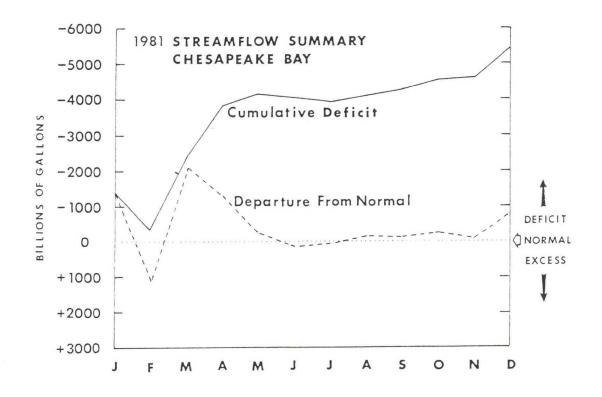
Table 3 shows monthly streamflow for 1980 and 1981 at 5 sections along the Bay. The low precipitation from late 1980 and much of 1981 affected streamflow values which are the lowest on record for those months. Only February, June, and July exceeded normal monthly streamflow (Figure 2). Abundant February rain over the Susquehanna Basin temporarily reversed a cumulative deficit trend lasting from late 1980, despite low runoff in tributaries of the southern Bay (Figure 3). Areawide deficits of streamflow in March and April brought the cumulative deficit close to 4 trillion gallons. Runoff between May and November remained slightly below normal. December was more than 40,000 cubic feet per second lower than normal, ending the year with a deficit of nearly 5.5 trillion gallons.

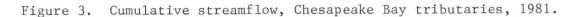
3.3 Air Temperatures


January was very cold throughout the Bay area, averaging nearly 6°F below normal among the 11 stations. (Table 4 and Table 5). Icing in Chesapeake Bay reached 50 percent by 18 January when warming through February arrested the icing. February temperatures were well above normal among most of the 11 stations.


March temperatures were cooler than normal and April returned to warmer than normal temperatures.

May through September exhibited nearly normal temperatures. June temperatures in the lower Bay area were more than 3°F above normal balancing slightly cooler than normal May and August temperatures for that region.


October averaged more than 3°F below normal.


November and December showed nearly normal temperatures for the entire region.

January and March 1981 streamflow values are lowest on record for those months. Combined with deficits from 1979 the low streamflow for 1981 contributed to higher than normal salinities in the Bay. Data from U.S. Geological Survey.

January departure from normal streamflow reflects the extremely low precipitation throughout the Chesapeake Bay drainage area during the month and dryness in late 1980. Abundant February rain over the Susquehanna basin temporarily reversed the cumulative deficit trend though drainage areas in the southern portion of the Bay showed low runoff. The 1981 streamflow deficit contributed to increased Bay salinity, affecting the abundance and distribution of commercially valuable fish and shellfish.

Table 3.	Monthly	streamflow,	Chesapeake	Bay	sections,	1980-1981.
----------	---------	-------------	------------	-----	-----------	------------

		Flow o	of Section*	(thousand	cfs)	
YEAR	MONTH	A	В	С	D	E
1980	Tanuanu	27.3	22.4		(7.0	
1900	January		32.4	55.5	67.9	88.8
	February	13.0	17.0	27.9	33.5	42.9
	March	72.2	83.0	110.7	125.6	151.0
	April	107.7	121.0	158.4	175.6	205.2
	May	47.0	53.4	85.6	92.9	104.8
	June	17.2	21.6	32.8	35.7	40.8
	July	11.9	15.7	22.4	24.7	28.8
	August	8.5	11.9	17.4	18.6	21.0
	September	5.0	7.0	11.0	12.4	15.0
	October	5.3	8.0	11.2	12.1	14.0
	November	10.8	14.4	20.6	21.8	24.2
	December	17.1	21.5	27.2	28.5	31.1
	Mean	28.6	34.0	48.4	54.1	64.0
1981	January	7.4	10.7	13.9	15.2	17.8
	February	110.6	124.2	141.3	145.2	151.9
	March	36.0	41.5	52.0	54.3	58.6
1	April	37.6	43.0	60.7	63.9	69.6
1	May	47.8	54.4	68.1	72.1	78.9
1	June	30.9	36.3	53.4	59.2	68.9
1	July	17.1	21.5	28.6	31.3	36.1
1	August	9.0	12.5	16.0	17.6	20.6
	September	9.6	13.2	17.7	19.6	23.2
	October	15.7	20.1	24.2	26.7	31.1
1	November	34.4	39.9	45.0	46.7	50.0
	December	23.8	28.6	34.9	8.3	42.2
	Mean	31.7	37.2	46.3	49.2	54.2

*Key to Sections:

- A = Mouth of Susquehanna River
- B = Above mouth of Potomac River
- C = Below mouth of Potomac River
- D = Above mouth of James River
- E = Mouth of Chesapeake Bay

Table 4. Monthly mean air temperature selected stations, Chesapeake Bay region, 1981.

Station			A	Air Tem	Temperature (°F)	re (°F	~					
	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Williamsport, PA	20.3	33.2	36.5	51.8	62.5	70.8	74.4	72.4	64.5	51.3	42.2	30.2
Wilkes-Barre, PA	19.5	34.9	36.2	51.0	59.8	68.5	72.2	70.1	62.1	49.1	41.1	29.1
Harrisburg, PA	27.3	34.6	38.7	53.7	61.9	71.6	75.7	72.2	63.8	50.7	44.6	31.8
Aberdeen, MD	27.5	39.7	42.5	57.7	63.0	74.1	76.8	73.7	67.7	53.9	46.5	34.2
Baltimore, MD	27.9	38.8	41.9	57.0	62.2	74.3	77.3	74.4	67.7	53.2	46.2	34.5
Washington, DC	33.0	43.7	47.6	62.1	66.2	78.7	80.2	77.0	71.0	58.3	51.4	38.5
Chantilly, VA	27.8	38.5	41.4	57.0	60.9	73.5	75.1	71.9	66.7	52.5	45.9	34.1
Royal Oak, MD	29.4	40.7	43.6	58.8	63.0	75.8	77.4	75.3	68.8	56.7	47.7	37.0
Patuxent, MD	30.1	39.4	44.2	58.9	63.4	76.3	78.5	75.5	69.3	57.1	49.4	37.6
Richmond, VA	31.2	42.2	44.6	60.6	64.1	77.9	79.6	75.1	69.4	56.4	49.1	38.0
Norfolk, VA	32.7	43.1	45.4	61.2	65.1	78.3	79.8	75.1	70.7	51.6	50.7	41.0

Table 5. Monthly mean air temperature anomaly selected stations, Chesapeake Bay region, 1981.

•

.

•

*

Station				ALT LEMPERALUTE DEPARTUTE	Inferation	dan ati	arrure	Irom Normal ('F)) LTMAL (r /		
	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Williamsport, PA	-6.9	-6.9 +4.6	-1.0	+2.0	+2.4	+2.0	+1.5	+1.5	+0.5	-2.0	+0.7	0.0
Wilkes Barre, PA	-6.5	-6.5 +7.6	+0.2	+2.5	+0.9	+0.6	0.0	+0.1	-0.8	-3.5	+0.3	0.0
Harrisburg, PA	-6.4	-6.4 +2.3	-2.3	+0.9	-1.2	-0.4	-0.4	-1.7	-3.2	-5.1	+0.8	-0.8
Aberdeen, MD	-5.8	+5.0	0.0	+4.2	-0.3	+1.6	+0.4	-1.1	-0.7	-4.1	+0.2	-0.8
Baltimore, MD	-5.5	-5.5 +4.0	-0.9	+3.2	-1.5	+1.9	+0.7	-0-5	-0.8	-4.2	+0.1	-0.8
Washington, DC	-2.6	-2.6 +6.4	+2.5	+5.7	0.0	+4.1	+1.5	-0.1	+0.4	-1.5	+3.4	+1.1
Chantilly, VA	-4.3 +4.	+4.7	-0.4	+3.9	-1.7	+2.4	-0.2	-1.7	-0.2	-3.4	+1.2	+0.1
Royal Oak, MD	-6.7	-6.7 +3.1	-1.2	+3.7	-1.9	+2.0	-0.6	-0.4	-0.9	-3.1	-1.4	-2.1
Patuxent, MD	-5.9	-5.9 +1.4	-1.8	+3.9	-1.6	+3.3	+0.5	-1.5	-1.7	-3.2	+0•4	-2.0
Richmond, VA	-6.3	-6.3 -2.8	-2.3	+2.8	-2.4	+3.7	+1.7	-1.2	-0.6	-2.9	+0.1	-1.0
Norfolk, VA	-7.8	-7.8 +1.7	-2.7	+3.4	-1.6	+3.8	+1.5	-1.8	-1.1	-2.1	-0-0	-1.3

3.4 Surface Water Salinity and Temperature

Bay salinity and temperature vary together under the influence of freshwater inflow, sea water, air temperatures, and solar radiation. Bay salinities range from near oceanic (30.0 ppt) at the mouth to brackish at the head of the Bay. During 1981 salinities were overall higher and temperatures overall cooler than normal.

Salinity

The National Ocean Survey (NOS) maintains daily surface water salinity and temperature measurements at selected stations (Figure 4) along the U.S. Coast. Table 6 gives mean monthly values of salinity and temperature at five NOS stations on Chesapeake Bay, computed in accordance with NOS instructions.

All Bay stations except Kiptopeake Beach remained at higher than normal salinity throughout the year (Table 7). Kiptopeake shows a salinity anomaly of -0.4 parts per thousand (ppt) for July when all stations except Baltimore approached nearest to their respective normals (Figure 5). Surface salinities are 2-7 ppt above normal in early 1981 due to a precipitation deficit from mid-1980 and very dry January conditions in the Bay region. Although streamflow increased in February following higher than normal rainfall, only Baltimore and Annapolis anomalies reflect the situation. March anomalies decreased at all stations except Chesapeake Bay Bridge Tunnel.

March dryness appears to have driven April salinity anomalies higher in the upper Bay. From May through July all station salinity anomalies again declined following normal and above normal rainfall over the area. August, September, October and November show alternating slight increases and decreases in salinity anomalies around the Bay. December anomalies rise sharply to end 1981 with values as high as when the year began.

In addition to remaining consistently above normal, the seasonal cycle of salinity shows differences from an average year at some of the stations (Figure 6). Baltimore salinity is near the average pattern decreasing to a minimum salinity in June then increasing to a maximum in October. Annapolis salinity follows a near average pattern very similar to that of Baltimore, but shows an unusual rise in December.

Solomons salinity displays unusual secondary peaks in February, April, and December. The February peak may reflect the lingering drought of 1980, but the April peak is relatively distinct and must be related to more local phenomena since similar patterns do not appear at the other stations.

The Chesapeake Bay Bridge Tunnel salinity showed the largest departure from normal of the seasonal cycle of salinity of all the stations considered. The Chesapeake Bay Bridge Tunnel salinity normally exhibits a minimum in March or April of around 19.8 ppt and a maximum plateau near 24.1 ppt through the months of July through October. However, during 1981 the salinity at this station showed maxima in March and May followed by a minimum in July and a plateau from September to November.

Kiptopeake Beach exhibits strong oceanic influence due to location relative to the mouth of Chesapeake Bay. The cycle of salinity at Kiptopeake normally

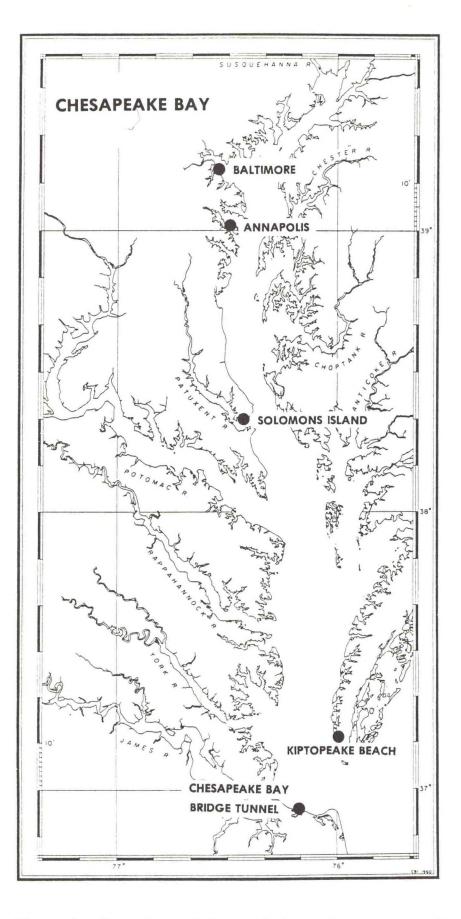


Figure 4. Locations of National Ocean Survey temperature and density stations, Chesapeake Bay.

Table 6. Monthly mean surface water temperature and salinity, selected stations, Chesapeake Bay, 1981.

A. Surface Salinity (ppt)

					IJUIIOLI						
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		8.4	6.2	5.8		6.9	8.0	9.7	10.8	11.1	10.6
		9.6	7.2	6.9		9.2	10.2	11.6	13.1	13.6	12.0
15.0		13.1	11.2	10.8		12.6	13.5	14.8	16.0	16.0	15.8
Kiptopeake Bch, VA 26.7 2 Chesaneake Bay	26.1	25.4	24.4	24.6	25.8	26.4	27.3	27.7	27.7	27.1	26.5
, VA 21.8			19.9	20.6		24.2					

Station					W	Month						
	Jan	Feb	Mar		May	Jun	Jul	Aug		Oct		Dec
Baltimore, MD Annapolis, MD Solomons Is., MD Kiptopeake Bch, VA Chesapeake Bay Bridge Tunnel, VA	37.4 36.9 37.8 38.7 38.7 39.6	37.0 36.7 37.4 38.8 41.2	42.6 42.6 42.6 42.6 42.6 46.9	53.1 53.2 52.5 53.1 55.2	64.2 64.8 64.6 63.1 63.1	74.1 74.5 74.5 72.1 72.1	79.1 80.2 80.1 77.2 79.0	79.5 79.7 80.1 77.2 79.9	75.2 74.8 65.7 73.8 75.4	65.7 64.9 65.7 64.6 64.6	54.0 52.9 54.7 53.8 53.2	43.0 41.7 43.3 44.1 45.1

18

.

Table 7. Monthly surface water temperature and salinity anomaly, selected stations, Gnesapeake Bay, 1981.

•

.

.

.

A. Surface Salinity Anomaly (ppt)

Station						Month							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
Baltimore, MD	+7.5	+5.2	+4.2	+4.7	+3.8	+2.8	+3.2	+4.8				+7.7	7.44.7
Annapolis, MD Solomon Is., MD	+5.6 +4.8	+4.2+5.6	+3.5 +3.1	+5.9 +6.9	+4.1+5.9	+2.8 +3.3	+2.3 +2.3	+3.5	+3.5 +2.8	+3.5+4.2	+2.9 +3.3	+5.4+4.0	+4.0 +4.1
Kiptopeake Bch, VA Chesanaaka Bay	+2.8	+4.0	+2.8	+3.3	+4.5	+1.1	-0.4	• •				+2.1	+1.9
Bridge Tunnel, VA	+4.9	+6.0	+9.3	+8.6	+8.3	+5.0	+ •9	+4.6	+4.2	+4.9	+5.6	+5.7	+5.7
B. Surface Temperature Anomaly	Anomaly	(Deg. F)	F)										
Station						Month							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg

Avg	4 -0.4 2 -1.6 5 -1.0 7 +1.2 5 -2.1
Dec	-1.4 -1.2 -0.6 +2.7 -1.5
Nov	-0.2 -0.8 -0.8 -0.5 -0.5
Oct	-3.7 -4.4 -2.9 -2.1 -2.1
Sep	-1.3 -2.5 -1.0 +0.8 -2.2
Aug	-0.6 -2.0 -0.3 +0.7 -3.4
Jul	-0.6 +1.1 +1.0 +4.2 -0.6
Jun	+0.5 +0.4 +1.6 +5.3 +0.3
May	-0.2 -2.0 -1.5 -0.1 -3.2
Apr	+3.4 +0.8 0.0 +3.7 -0.2
Mar	-0.5 -1.2 -0.4 +1.4
Feb	+2.3 -0.5 -1.5 +1.3 -2.6
Jan	
	Baltimore, MD Annapolis, MD Solomons Is., MD Kiptopeake Bch, VA Chesapeake Bay Bridge Tunnel, VA

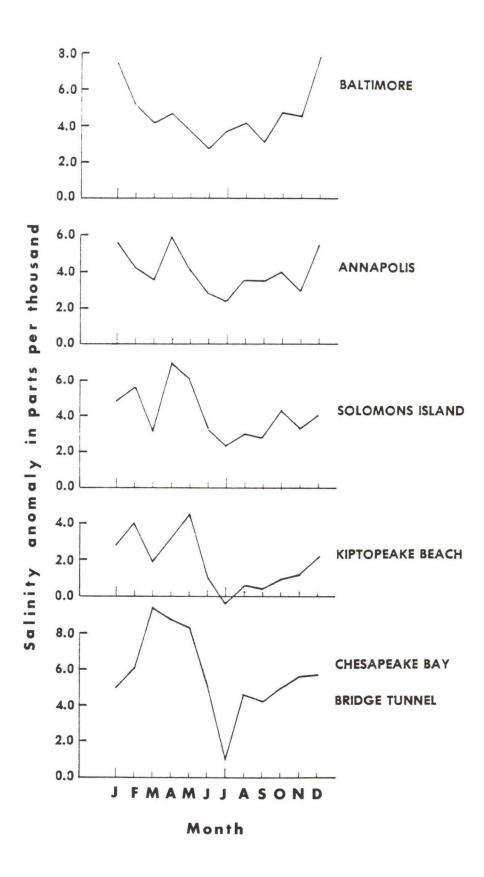


Figure 5. Monthly surface water salinity anomaly, selected stations Chesapeake Bay, 1981

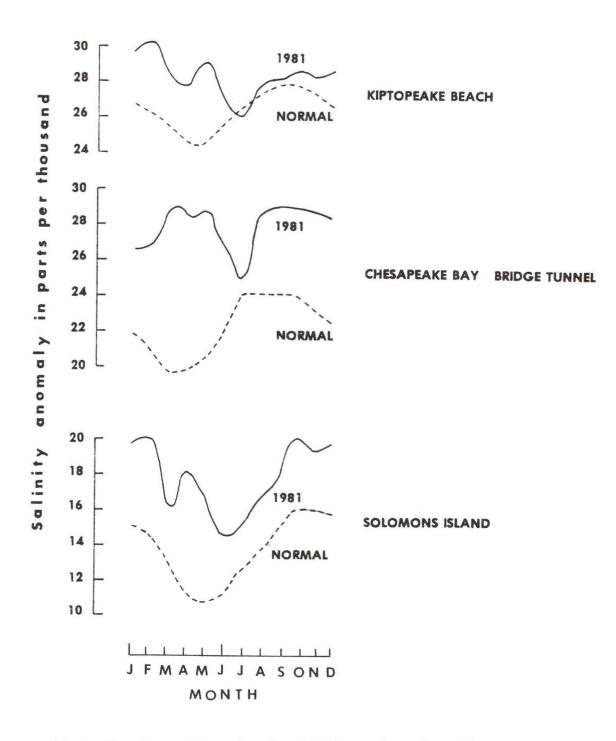


Figure 6. Seasonal cycle of salinity, selected stations, Chesapeake Bay, 1981.

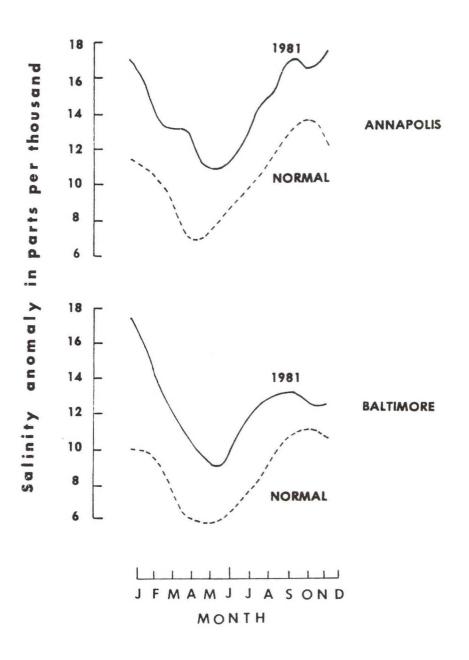


Figure 6. Seasonal cycle of salinity, selected stations, Chesapeake Bay, 1981 (Continued).

has a maximum of 27.8 ppt in September-October and a minimum near 24.5 ppt in April-May. The normal curve shows a very slight secondary maximum in January. During 1981 the salinity showed maxima in February (30.0 ppt), May (29.2 ppt), and October (28.6 ppt) with minima in April (27.8 ppt) and July (26.0 ppt). The double maxima in late winter and spring are probably related more to ocean water intrusion than to direct effect of precipitation.

Water Temperatures

Surface temperatures around the Bay remained overall cooler than normal during 1981 (Table 7) although the seasonal cycle followed a nearly average pattern at all stations. The temperature anomaly moved closer to normal over the year, so that the mean temperature anomaly for December 1981 was $-0.4^{\circ}C$ compared to $-4.5^{\circ}C$ for January 1981 (Figure 7).

The greatest impact of water temperature during 1981 was icing in January and February. NASA studies suggest 1981 icing in Chesapeake Bay is one of the more extensive since records began. Historical data show 15 percent of the Bay freezes in a normal year. The five-year period 1977-1981 experienced extreme ice conditions with 50 percent coverage in 1981 (Table 8).

Table 8.	Maximum Ice 1977-1981	Cover o	f Chesap	eake Ba	у
	1977	1978	1979	1980	1981
Estimated maximum ice cover extent (%)	85	30	60	15	50
Estimated date of maximum ice cover extent	Feb 10	Feb 17	Feb 20	Mar 2	Jan 18

Data courtesy of NASA, estimated from Landsat imagery and Coast Guard reports.

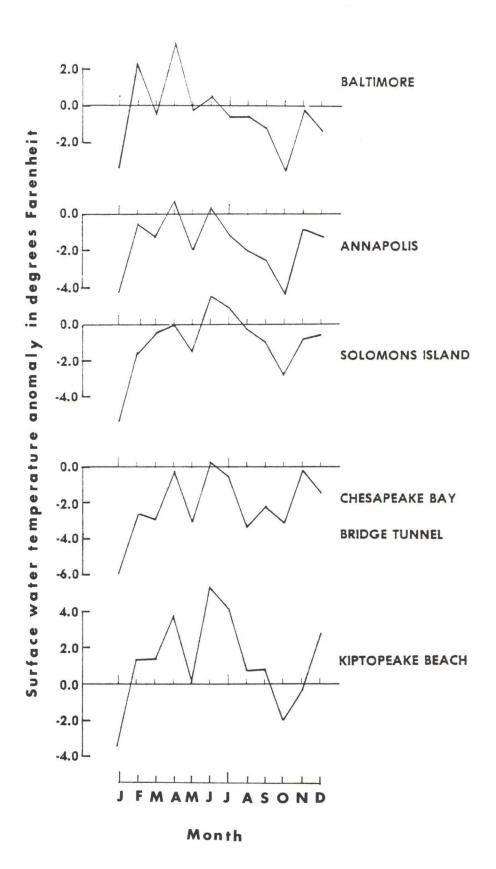


Figure 7. Monthly surface water temperature anomaly, selected stations, Chesapeake Bay, 1981.

4. Fisheries

Chesapeake Bay is the largest estuary on the East Coast of the United States and one of the largest in the world. The Bay provides extensive and valuable resources. Oyster and blue crab production rank among the highest in the United States and the Bay serves as the spawning and nursery area for the Atlantic coast striped bass and the nursery area for many other commercially important marine fishes such as menhaden and bluefish. Many marine fishes use the bay as a summer feeding ground, moving upstream as far as Baltimore to prey on the abundant estuarine forage species.

4.1 Summary of Commercial Fishing

Chesapeake Bay commercial fisheries composed ten percent of total landings in the United States in 1981, generating over 73 million dollars in the overall economy (Table 9), \$46 million in Maryland and \$27 million in Virginia.

Combined landings including ocean catches for Maryland and Virginia are over 600 million pounds for 1981, 114 million pounds lower than 1980. Catch value declined approximately four million dollars in the two States. While total U.S. poundage decreased over 500 million pounds, value increased slightly. The record high for Maryland landings is 141,607,000 pounds, set in 1890. The Virginia record is 666,180,000 pounds set in 1972.

Lack of rainfall in 1981 affected the abundance and distribution of some commercially valuable Bay species. The precipitation deficit which began in mid-1980 contributed to higher than normal salinities in 1981, extending the range of salinity sensitive finfish and shellfish species. The upstream salinity shift in normally low salinity areas of the Bay allowed some coastal ocean species to move into areas where they normally do not occur. Catches of coastal ocean finfish and squid occurred in upper portions of rivers and in the upper Bay during summer.

1	.980	1	981
Thousand pounds	Thousand dollars	Thousand pounds	Thousand dollars
160,074	58,943	179,862	73,811
57,724	34,846	91,780	46,159
102,350	24,097	88,082	27,652
717,086	129,651	603,034	125,764
79,571	44,658	115,115	56,640
637,515	84,993	487,919	69,124
6,482,354	2,237,202	5,977,069	2,387,739
	Thousand pounds 160,074 57,724 102,350 717,086 79,571 637,515	poundsdollars160,07458,94357,72434,846102,35024,097717,086129,65179,57144,658637,51584,993	Thousand poundsThousand dollarsThousand pounds160,07458,943179,86257,72434,84691,780102,35024,09788,082717,086129,651603,03479,57144,658115,115637,51584,993487,919

Table 9. Commercial landings, finfish and shellfish, 1980 and 1981.

All data are preliminary from National Marine Fisheries Service. Landings are reported in live weight for all items except univalve and bivalve mollusks, such as clams, oysters, and scallops, which are reported in weight of meats (excluding the shell). Bay landings (1) include less than 1% ocean landings. Confidential data are not included for Virginia. State landings (2) include all State landings and confidential data.

	Thousand pounds	Thousand	Thousand	
	pounds		Thousand	Thousand
	poundo	dollars	pounds	dollars
Alewives	82	8	520	42
Bluefish	371	45	2,058	293
Bonito	1	-	1	-
Butterfish	-	-	51	14
Croaker	-	-	407	118
Flounder, Black	-	-	6	3
Flounder, Fluke	7	5	434	130
Flounder, Atlantic	5	2	2	1
_ing Cod	-	-	14	3
Mackeral, King	-	-	2	1
Mackeral, Spanish	-	-	3	1
Menhaden	10,611	627	-	-
Mullet	-	-	7	1
Sea Trout, Gray	218	92	2,161	995
Sea Trout, Spot	-	-	4	2
Shark, Dogfish	1	-	31	6
Sharks, Unc.	-	-	2	-
Striped Bass	1,437	1,468	379	441
Whiting	-	-	17	5
Fish, other	2,103	854	5,440	1,201
All species, 1981	14,836	3,101	11,539	3,257
All species, 1980	14,131	3,224	21,437	5,072
All species, 1979	8,840	1,776	31,101	5,430
All species, 1978	10,917	2,086	37,989	5,067
All species, 1977	12,402	1,735	533,879	3,646
All species, 1976	9,057	1,504	423,719	14,829
All species, 1975	11,291	1,549	306,733	10,173
Data are preliminar			ries Service. Data includes	

Table 10. Commercial finfish landings by State and species, 1981, and total landings, 1975 - 1981.

Data are preliminary from National Marine Fisheries Service. Landings are reported in live weight. Data includes less than 1% ocean landings. Potomac River landings are included in Maryland data. Confidential data are not included for Virginia.

4.2 Finfish

Data

Seven species of finfish dominate Chesapeake landings for 1981: alewives, bluefish, croaker, flounder (fluke variety), menhaden, gray sea trout, and striped bass (Table 10). Menhaden compose 42 percent by weight of total commercial landings in the United States. Striped bass is the most valuable finfish species, contributing \$1.9 million to the economies of Maryland and Virginia. Table 10 shows landings 1975-81 for Maryland and Virginia for Chesapeake Bay only. The Maryland Tidewater Administration reports the relative abundance index for striped bass spawning success (Table 11) for 1981 in Chesapeake Bay is the lowest in the 28-year history of the survey. The relative abundance index is based on sampling of inch-long fry in Bay tributaries.

Table 11.	Relative abundance index for young-of-the-year striped bas	S
	Chesapeake Bay, 1954-1981	

Year	Index	Year	Index	Year	Index	Year	Index	
1954	5.2	1961	16.9	1968	7.2	1975	6.7	
1955	5.5	1962	12.2	1969	10.2	1976	4.9	
1956	15.2	1963	4.0	1970	30.4	1977	4.9	
1957	3.2	1964	23.5	1971	11.8	1978	8.4	
1958	19.2	1965	7.4	1972	8.5	1979	4.2	
1959	1.6	1966	22.1	1973	9.0	1980	1.9	
1960	7.1	1967	7.8	1974	10.1	1981	1.2	
from Maryl	and Tidew	water Adr	ninistra	tion				

Virginia 1981 finfish landings in the Bay are down in poundage and dollar value compared to 1980 figures. Market conditions and drought contributed to the decline. Higher than normal salinities extended ranges for highly mobile finfish species such as bluefish beyond the ability of commercial fishermen to capitalize on the upstream shift of habitat. Other species which declined from 1980 in Virginia landings include alewives, shad, flounder, spot, croaker, menhaden, and striped bass. Maryland 1981 finfish landings in the Bay remain close to 1980 figures. Alewives, bluefish, flounder, gray sea trout and striped bass all declined in poundage, although prices per pound increased. Preliminary NMFS statistics show menhaden landings for Maryland are higher in 1981 than in 1980, contributing to the stability of total Maryland Bay landings for both years.

Fish Kills in Virginia

Virginia State Water Control Board identified and investigated 52 fish kills in Virginia waters during 1981 (Table 12). Estimates of loss range from \$16 for a small kill in Nero Creek in March to \$13,889 at a spill of toxic wastes in the Piney and Tye Rivers in June. Cost estimates are not available for the large kill in August in Cockrell Creek. Causes of many kills are unknown. Oil spills, temperature, low oxygen, toxic wastes, effluents, pH, and net dumping are agents of the identified kills. The most common agent for Virginia fish kills this year appears to be dissolved oxygen depletion. The dollar cost of the fish kills is approximately \$30,000 including \$8,700 for investigations.

4.3 Shellfish

The upstream intrusion of higher than normal salinity in 1981 extended the habitat range available to various Bay species, especially the commercially important blue crab and oyster. Landings figures reflect the increased abundance of shellfish to watermen.

Shellfish landings in Maryland for 1981 are 77 million pounds and 43 million dollars (Table 13). All categories increased over 1980 except soft clams, which are down 358,000 pounds. All categories of Virginia shellfish show increases in 1981 over 1980. Maryland and Virginia 1981 shellfish landings in dollars and pounds are highest for the period 1975-1981. New reporting procedures for blue crab landings in Maryland account for a portion of the high Maryland 1981 figures.

Monitoring agencies in Maryland and Virginia reported unusually high seasonal counts of oyster spat. Studies by the Virginia Institute of Marine Science (VIMS) show sections of the James and Rappahannock rivers received exceptionally good spatset. Other Virginia rivers experienced above average spatfall. Recently unproductive natural beds in the upper Bay also received good spatset indicating good harvest in 2-3 years if survival is high. Traditional oyster grounds may shift upstream following the intrusion of higher than normal salinity in tributaries and upper Bay. Former habitats reduced in area or eliminated due to the 1972 influx of fresh water from Hurricane <u>Agnes</u> may be reestablished due to high salinities in 1980 and 1981, possibly increasing the abundance and distribution of oysters for the next several years.

Blooms

During summer 1981, field observers reported scattered local kills of shellfish, possibly associated with algal blooms. Bloom events occurred in June and July in the upper Bay (Table 14). The green alga, <u>Chlorella</u>, was reported in Eastern Shore oysters during summer months. Poor condition of oysters delayed harvest activities in affected areas up to three weeks.

Month	Location	Probable Cause	Estimated Fish Loss (in dollars)
January	James River	Cold water temperature, icing	
January	Bennett Creek	Icing, stress	
January	West Neck Creek	Cold water temperature, icing	
February	Lewis Creek	Unknown	
March	Nero Creek	Nutrients, oxygen, stress	16
April	Indian Creek	Algal bloom, low DO	
April	Moore's Creek	Sewage overflow	
April	Moore's Creek	Sewage effluent, low DO	
April	Tye River	Unknown	571
April April	Opequon Creek Ni River (Reservoir)	Toxic wastes Unknown	571
Мау	Piankatank River	Net kill (menhaden)	
May	Rappahannock River	Net dumping	
May	Dutchman Creek (private pond)	Algae, low DO	
May	Town Run/Abrams	Unknown	
May	Mountain Run Lake	Unknown	
May	Piney and Tye Rivers	Toxic wastes	13,889
June	Piney and Tye Rivers	Toxic wastes	311
June	Labrel Run	Unknown Classic monhadon kill	
June	Lynnhaven River S. Branch,	Classic menhaden kill	
June	Elizabeth River	Unknown	
June	Potomac River	Low DO	
June	Tributary to		
	Appomattox River	Unknown	
June	Tributary to Massaponax River	Low DO	
June	Swift Creek	Spawning stress	
June	Slate River	Toxic wastes	
July	Morey Creek (private pond)	Oil spill	
July	Chickahominy River	Low DO, stress	
July	Jones Creek	Unknown	
July	Deep Creek	Temperature, DO, red tide	
July	Lake off		
July	Lynnhaven River E. Branch	Algal bloom, DO	
	Elizabeth River	Unknown	

Table 12. Virginia fish kill events, 1981.

.

.

.

.

Month	Location	Probable Cause	Estimated Fish Loss (in dollars)			
July July	Swift Creek Dogue Creek	Unknown DO depletion				
August August August August August August	Yeocomico River Scopus marsh Cockrell Creek Yeocomico River Four Mile Run Chesapeake Bay	Net dumping DO Unknown Unknown Unknown Unknown	 (large kill) 			
September September September September September September	Little Bay (unnamed tributary) Chisman Creek Shenandoah River Kanawka Canal Stutt's Creek Little Bay (unnamed tributary) Parrot Creek	Unknown Temperature, stress Low pH from H ₂ SO4 Canal lock problem Classic menhaden kill Unknown Classic menhaden kill	 3,963 			
October	Mulberry Creek	Unknown				
November November	Powhite Creek Jackson River	Fish drained out pond Toxic wastes	2,484			
December December	York River Peirce Creek	Unknown Unknown				
============						
		Estimated dollar-loss to State	\$21,234			
f	Data from Virginia State Water Control Board summarized from individual field reports. Data are preliminary and subject to revision. (DO = Dissolved Oxygen)					

Table 12. Virginia fish kill events, 1981 (continued).

Species	Mary	and	Virgin	ia
	Thousand	Thousand	Thousand	Thousand
	pounds	dollars	pounds	dollars
Crabs, Blue	56,293	\$ 15,362	38,447	\$ 7,549
Crab, Other	2,338	2,823	410	625
Clam, Hard	65	148	5,061	8,495
Clam, Soft	1,568	3,188		
Oyster Meat	16,546	2,823	5,607	6,897
Shellfish, Other	134	28	252	121
All species, 1981	76,944	43,058	49,777	23,687
All species, 1980	43,593	31,622	45,640	17,765
All species, 1979	39,555	27,147	50,226	19,390
All species, 1978	33,855	24,352	46,524	19,887
All species, 1977	35,039	22,791	44,104	14,243
All species, 1976	36,612	23,554	33,031	12,229
All species, 1975	42,372	18,706	38,680	10,191

Table 13. Commercial shellfish landings by State and species, 1981, and total landings, 1975-1981.

Data are preliminary from National Marine Fisheries Service.

Landings are reported in live weight except univalve and bivalve mollusks, such as clams and oysters, which are reported in weight of meats (excluding the shell). Data includes less than 1% ocean landings. Potomac River landings are included in Maryland data.

	Table 14. Maryland Bloom Events,	1981
Month	Location of Event	Description of Event
May	Manokin River	Massive breeding swarms of clam worms (<u>Nereis succinea</u>) (an estuarine polychaete worm). Observed in bright red patches occupying about 100 sq. ft. of surface area. An estuarine event not often witnessed.
June	Western Bay shore Dundalk to Bodkin Creek	Dark brown water from plankton bloom.
July	Upper Bay, scattered	Plankton blooms.

M 1 1 D1 E 1

1001

Data extracted from monthly technical briefs issued by Maryland Office of Environmental Programs

Icing

Ice conditions on Chesapeake Bay during the winter of 1981 reduced oyster harvest activities and damaged fishing gear and wooden hulled boats. Observers at NASA estimate that on 18 January approximately 50 percent of the Bay showed ice cover. NASA studies suggest 1981 icing in Chesapeake Bay is one of the more extensive since records began. See discussion of icing in Section 3.4 and Table 8.

4.4 Diseases

- 13 - 14

During previous droughts higher than normal salinity favored the survival and estuarine distribution of predatory oyster drills, <u>Urosalpinx cinera</u> and <u>Eupleura caudata</u>, and disease organisms MSX, <u>Minchinia nelsoni</u>, and Dermo, <u>Perkinsus marinas</u>. Occurrence of diseases and predators in oysters in 1981 was local and sporadic and did not influence the harvest or spatset.

5. Recreation

Climate and water quality in the Bay determine much of the recreational use of the Bay area, including boating, fishing, swimming, and camping. Licenses indicate potential demand for boating. Bay Bridge traffic indicates indirectly the use of ocean beaches and Eastern Shore recreational facilities. State park attendance and revenue are direct indicators for recreation.

5.1 Boating Licenses and Revenues

Boating related revenues bring in excess of \$600,000 to the State of Maryland each year, about 70 percent of these fees in the Bay counties of Anne Arundel, Baltimore, Calvert, Caroline, Cecil, Charles, Dorchester, Harford, Kent, Prince Georges, Queen Anne, St. Mary, Somerset, Wicomico, and Worchester, and the city of Baltimore. While the total fee revenue is small, the figures (Table 15) reflect an increase year-by-year of more than 100,000 persons joining the recreational load to the Bay system. Figures are not presently available to determine the specific impact of weather on the boating sector of the Bay economy.

License Type Boat Dealer Original Cost Boat Registration	<u>1981</u> •6 9	<u>1981</u> .6 \$14.2 .1 \$517.4	Total 19 .6 111.9	00	<pre>if Licenses 1979 113.0 \$</pre>	Number of Licenses and Fees (thousands) 0 1979 1978 \$14.3 \$510.0 113.0 \$513.5 125.4 \$510	ees (thou 19 	ousands) 1978 \$510.7	<u>1977</u> 112.9 \$5	<u>1977</u> 112.9 \$518.1	Average Percent of Total From Bay Counties 65%
uriginal boat Title	25.5	\$50.9	24.9	\$49.6	26.9	\$53.5	28.1	\$55.7	30.5	\$60.8	74%
Security Interest Filing Fee	3.4	3.4 \$51.0	4.0	\$56.0	5.2	1.17\$	5.4	\$81.7	5.7	\$85.1	72%
Total All Boat Related Fees		\$640.3		\$636.3		\$650.9		\$709.3		\$670.1	
om Maryla r 1977-19	nd Depai 80 are (rtment of calendar y	Natural /ear.	Data from Maryland Department of Natural Resources. data for 1977-1980 are calendar year.		Data for 1981 are fiscal year;	are fisc	al year;			

+

36

5.2 Bridge Traffic Statistics

Autombile and light commercial traffic on the Bay Bridge has increased every year since 1952 (Figure 8) except 1957 and 1963. Heavy commercial travel has increased at a slower rate. The two types of traffic have remained in approximately equal proportions of the total volume over Bay Bridge since 1952.

Automobile and light commercial traffic over the Chesapeake Bay Bridge was greater for all quarters of 1981 than for 1980 (Table 16). Traffic was maximum in the third quarter and least in the first quarter. Heavy commercial traffic was maximum in the third quarter and minimum in the first quarter. Toll revenue overall declined from 1980 to 1981.

Bay Bridge tolls provide \$14.7 million revenue to the State of Maryland each year. Sixty per cent of the traffic occurs during the months of April through September. Warm summer weather strongly influences toll revenue of Chesapeake Bay Bridge.

	1981 Auto & Light Commercial	1981 Heavy Commercia	1981 Toll 1 Revenue	1980 Auto & Light Commercial	1980 Heavy Commercial	1980 Toll Revenue
First Quarter	1,631,717	246,530	\$ 2,614,966	1,496,226	255,722	\$ 2,501,481
Second Quarter	2,660,080	279,248	\$ 4,053,749	2,579,849	275,745	\$ 3,982,544
Third Quarter	3,412,484	283,286	\$ 4,979,326	3,273,084	276,145	\$ 4,803,294
Fourth Quarter	2,075,509	251,622	\$ 3,140,649	2,015,266	267,469	\$ 3,152,756
Total	9,779,790	1,060,686	\$14,788,690	9,364,425	1,075,081	\$14,440,075

Table 16. Traffic volume and toll revenue 1980 and 1981

Data from Maryland Transportation Authority Quarterly Financial Reports March 31, 1981, June 30, 1981, September 30, 1981, and December 31, 1981.

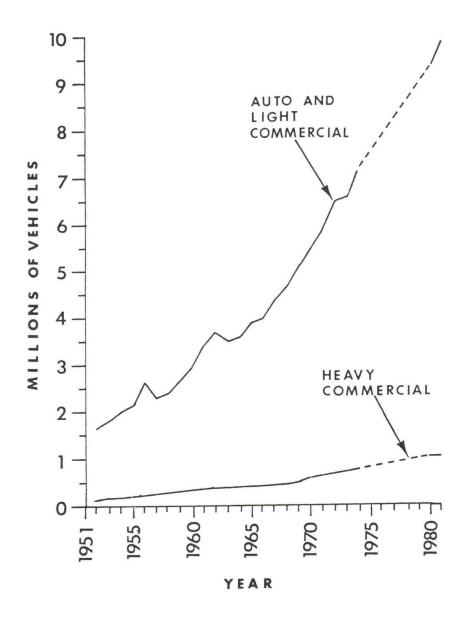


Figure 8. Chesapeake Bay Bridge vehicle traffic, 1951-1981. (Dashed line indicates data not available for years 1975-1979.)

5.3 State Park Activity Levels

The 37 Maryland State parks provide recreation facilities to more than 5 million persons each year. These parks provide useful information about weather effects on recreational activity. Day usage peaks during June and July while camper use peaks July and August (Table 17). Since a majority of the revenue derives from day use, and weather may determine day usage of the parks, the weather directly affects revenue from the parks. With summer 1981 being close to normal for the region the park revenue likely is near average. Using fiscal year attendance data, the second half of calendar 1981 showed lower attendance than the same period of 1980. Parks around the Bay proper account for 36 per cent of all Maryland State parks attendance.

	Sandy Po	int State Par		Point	Lookout State	
Month	Day Use	Camper Use	Total Revenue	Day Use	Camper Use	Total Revenue
January	5455		\$ 409	2563	0	\$ 800
February	6051		330	3509	11	918
March	10441		776	6915	60	1063
April	24113		2586	9069	522	2205
May	73444		31579	29297	5157	3590
June	78947		67953	31337	8975	28238
July	76959		54768	28315	13277	20653
August	62828		45933	24266	10779	16970
September	99800		13473	21505	5436	13393
October	11500		624	11728	1988	6353
November	7670		577	3920	157	551
December	2736		366	2367	6	876
Totals	150011		¢21037/	17/771	16369	\$95610
Totals	459944		\$219374	174771	46368	\$95610

Table 17. Attendence and Revenue, Selected Maryland State Parks, 1981

Data from Maryland Department of Natural Resources, Parks and Recreation.

39

5.4 Marine Accident Statistics

Accidents in the marine environment relate both to number of boats on the water and the weather. During 1981, 27 persons died and 74 were injured in 224 boating accidents in Maryland Bay waters (Table 18). Figures are not available for Virginia portions of the Bay. The Coast Guard additionally recorded 2800 search and rescue operations (SARs) for 1981. (Table 19).

Coast Guard search and rescue operations peak in July when recreational boating is maximum. Eighty-eight percent of SARs in the upper Bay are between May and September. SAR data includes any type of call to the Coast Guard including disabled boats and overdue vessels regardless of whether any damage or casualty results.

Maryland Department of Natural Resources (DNR) keeps figures for boating accidents where property damage or injury does occur. Table 18 shows DNR Marine Police data 1970-1981. Proportional to the number of boating accidents the property damage for 1981 is near average. Injuries and deaths associated with recreational boating depend strongly on individual safety practices for which no data exist.

40

Table 18. Maryland accident statistics recreational boating, 1970 - 1981.

Year	No. of boating accidents	No. of injuries	No. of deaths	Property damage (thousands)		
1970	188	26	54	\$ 258		
1971	198	26	58	763		
1972	189	40	40	295		
1973	210	62	42	503		
1974	211	69	47	440		
1975	177	55	17	631		
1976	223	27	31	528		
1977	218	30	19	626		
1978	195	44	33	398		
1979	224	84	38	781		
1980	234	79	27	830		
1981	224	74	27	427		
Totals	2491	616	433	\$ 6,480		
All data from Maryland Department of Natural Resources Marine Police and apply to recreational boating. Includes Potomac River to Virginia shoreline.						

TABLE 19. Search and rescue operations U.S. Coast Guard, 1981.

Month	Group Baltimore	Group Eastern Shore	Group Hampton Roads
January	11	3	34
February	15	4	26
March	30	0	43
April	95	5	115
May	135	11	255
June	178	18	280
July	206	28	312
August	163	19	231
September	124	6	165
October	79	7	129
November	42	3	68
December	28	3	36
Totals	1106	107	1694

Group Baltimore handles all the Bay North of Smith Point including Potomac River. Group Hampton Roads handles all of the Bay South of Smith Point. Group Eastern Shore covers the eastern portion of the Bay but rescue vessels use some of the same port facilities as the other two Groups.

6. Transportation

The Chesapeake Bay serves as an important resource for transportation both foreign and coastwise in the eastern United States. Heavy usage of an estuary such as the Chesapeake by shipping to Norfolk, Hampton Roads and Baltimore places unusual stress on the Bay. Pollution incidents are more probable with frequent shipping. Dredging of key channels for development and maintenance is a requisite operational expense. Icing in the upper Bay requires clearing during extremely cold winters. Except for the icing situations and extreme events such as hurricanes, shipping and Bay transportation continue uninterrupted by weather patterns.

6.1 Shipping and Shore Related Activity

The ports of Hampton Roads and Baltimore account for 80 per cent of export tonnage and 24 per cent import tonnage for all Atlantic ports. Each port handles more than 10 ships per day on the average. Principal cargos include coal (export), iron ore (import), petroleum (import), and grain (export). Trade through the port of Baltimore reportedly generated more than \$1 billion in revenue, \$52 million in State local taxes and employment for 79,000 workers in port related jobs during 1980 according to a Booz-Allen & Hamilton, Inc., study. Hampton Roads provides similar stimulus to the economy of Virginia.

Shipments for 1981 contributed \$155.9 million in customs receipts in Virginia and \$247.0 million in Baltimore from a total volume of 105.0 million tons of material worth \$17.65 billion for the two ports.

Vessel arrivals for 1981 totaled 3,776 for Baltimore and 3,703 for Hampton Roads, a decrease from 1980 of 5.3 and 8.6 per cent, respectively. Table 20 shows total export and import tonnages for the two ports for recent years.

Table 20.	Export an Baltimore				6-1981	
	1981	1980	1979	1978	1977	1976
Export (Millions of Tons)						
Hampton Roads Baltimore	55.4 21.5	58.2 21.6	42.0 18.1	22.5 14.2	31.8 14.0	40.0 14.9
Import (Millions of Tons)						
Hampton Roads Baltimore	7.2 12.9	9.4 15.3	10.4 20.3	11.3 14.5	12.3 15.9	11.9 9.7

6.2 Dredging

U.S. Army Corps of Engineers dredging operations in Chesapeake Bay navigable waters normally follow 5, 6, and 7 year cycles due to scheduling. Dredging in Ocean City, MD is every eight months and is included here because of its economic importance and proximity.

A dredging operation summary for 1980-present appears in Table 21. During 1980 completed projects removed 1.6 million cubic yards of sediment at a cost of \$5.2 million. Projects completed in 1981 removed 2.7 million cubic yards at a price of \$9.6 million. Projects underway or completed in the Baltimore Harbor area account for the largest portion of material removed and dollar cost, 3.4 million cubic yards and 11.5 million dollars, respectively. Dredging in 1980 and 1981 focused on tributaries and harbors in the Bay region with no operations in the Bay proper.

Although rainfall and sediment distribution are related, scheduling normally eliminates any direct correlation between weather patterns and volumes or dollar values for dredging operations.

l cost rs)
0
0
0
0

Table 21. Summary of dredging operations Chesapeake Bay region, U.S. Army Corps of Engineers 1980 - present.

Project Location	Completion date or Scheduled dates of Operation	Estimated quantity of material removed (cubic yards)	Estimated cost (in dollars)
Knapps Narrows	November 1981- January 1982	50,000	\$250,000
Neale Sound	October- December 1981	38,000	\$143,000
Ocean City	March 1982	40,000	N/A
Slaughter Creek	November- December 1981	48,000	\$181,000
St. Jerome Creek	May-June 1982	55,000	N/A
Twitch Cove and Big Thoroughfare	January-March 1982	130,000	N/A
	Summary of Operatio (October 1 -		
Year No. of Pr		ls removed	Dollar cost
1980 7 1981 7		4,000	\$5,200,000 \$9,600,000

Table 21. Summary of dredging operations Chesapeake Bay region, U.S. Army Corps of Engineers 1980 - present (continued),

7. Pollution Events Summary

The Chesapeake Bay system is heavily used for conflicting purposes. Oil and hazardous materials enter the Bay waterways only accidentally, but are related to the use of the Bay for transportation and industrial cooling. Manufacturers must dump some waste products into the Bay, and municipal sewage treatment and power generation all require water from the Bay. Only accidental spills and sewage outfall volume appear in this report.

7.1 Accidental Spills of Oil and Hazardous Substances

The U.S. Coast Guard, Department of Transportation, maintains records of spills of all hazardous substances which ultimately may enter navigable waters. Tables 22-25 give information on spills in the Chesapeake Bay Region for 1981 from the Pollution Incident Reporting System (PIRS) database managed by the Coast Guard. During 1981 a total of 364 spills put 184,000 gallons of various pollutants into the Bay and its tributary waters. The spills represent 3.6% of the spill incidents nationwide but only 0.9% of the total volume.

Eighty-one percent of the spills are oil spills, the largest being 35,000 gallons of diesel fuel on 28 November into Baltimore Harbor. Chlordane, coal dust, chlorosulphonic acid, and asphalt spilled into the Bay system during 1981. Table 25 and Figure 9 show those spills which occurred in the Bay proper.

Month	No. of Spills	Quantity (gallons)		
January	33	25,958		
February	39	11,377		
March	25	4,453		
April	26	20,248		
Мау	17	10,164		
June	20	3,486		
July	26	8,313		
August	34	9,009		
September	36	3,521		
October	35	42,721		
November	35	42,725		
December	38	4,790		
Total Chesapeake Bay region spills	364	186,765		
Total Spills, all U.S. waters	10,072	19,637,913		
Chesapeake Bay region				
spills as percentage of all U.S. spills	3.61%	0.95%		
Data from U.S. Coast Guard Pollution Incident Reporting System (PIRS) database. Data are preliminary and subject to revision. All spills listed here are withi latitudes 39°36'N and 36°46'N, longitudes 077°22'W and 075°38'E.				

Table 22. Spills of oil and hazardous substances by month, Chesapeake Bay region, 1981.

Material	(Gallons)	Date	Location	Source
Oils				
Diesel	35,000	November 28	Baltimore Harbor	Rail Vehicle General Cargo
Diesel	17,750	January 26	Patapsco River	Rail Vehicle dry bulk
Other Oil	8,300	April 5	Lower Potomac	Offshore Bulk Cargo Transfer
Diesel	7,000	July 25	Unavailable	Unavailable
Residual Fuel Oil	6,500	May 13	North of Baltimore	Rail Vehicle General Cargo
Diesel	5,500	November 30	Patapsco River	Rail Vehicle General Cargo
Diesel	5,500	August 11	Lower Potomac	Offshore Bulk Cargo Transfer
Other Hazardous	s Substances			
Chlorosulphonic	38,000	October 16	York River	Deep Water Port Transfer
Chlordane	15	June 11	Unavailable	Unavailable
Data from U.S.	Coast Guard	Pollution Incident	Reporting System	(PIRS) database.

Table 23. Spills (>5000 gallons) of hazardous substances and oil, Chesapeake Bay region, 1981.

Material	No. of Spills
Diesel Oil	136
Other Oil	75
Residual Fuel Oil	49
Other Distillate Fuel Oil	12
Unknown	25
Waste Oil	31
Gasoline	17
Other Pollutant	4
Other Material	2
Crude Oil	5
Natural Substance	3
Asphalt or Other Residual	1
Hazardous Substance	2
Other	2

Table 24. Number of spills by material type, Chesapeake Bay region, 1981.

Data preliminary from U.S. Coast Guard Pollution Incident Reporting System (PIRS)

Table 25. Accidental spills of oil and hazardous substances, Chesapeake Bay, 1981.

Janu Janu Febr Apri	January 5 January 19 January 27 February 24 Abril 19	2000 Gallons 2000 Gallons Sheen 5 Gallons Unknown 50 Gallons	Unknown Dry cargo ship Unknown Unknown Unknown Other vessels	Unknown Improper equipment Unknown Unknown Unknown Structural failure,
April June 6 June 1 June 2 June 2	April 20 June 6 June 15 June 20 July 10	2050 Gallons 20 Gallons 2 Gallons Sheen 500 Gallons	Tug or Tow Boat Unknown Unknown Unknown Other vessels	rupture or leak Flanges improperly secured Unknown Unknown Structural failure,
Augu Augu Sept Octo Octo	August 11 August 19 September 10 October 9 October 16 October 20	Unknown 100 Gallons 350 Gallons 50 Gallons 1 Gallon Sheen	Unknown Other vessels Unknown Unknown Onshore bulk cargo transfer Unknown	rupture or leak Unknown Unknown Unknown Rupture or leak Unknown

Data preliminary from U.S. Coast Guard Pollution Incident Reporting System (PIRS)

*

*

4

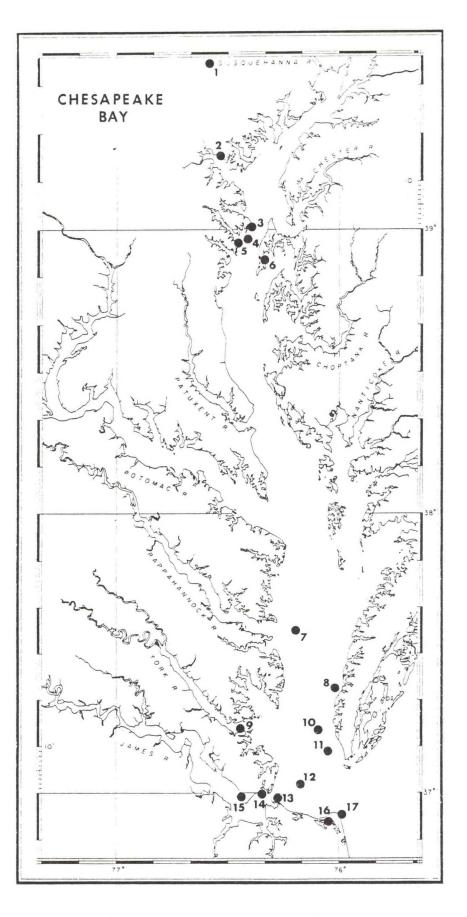


Figure 9. Locations of spills of oil and hazardous substances, Chesapeake Bay region, 1981. (Modified Chesapeake Bay Institute map)

7.2 Sewage Disposal Discharge

Environmental Protection Agency (EPA) studies estimate the Chesapeake Bay drainage basin at 64,000 square miles in six states; Pennsylvania, New York, Maryland, Virginia, Delaware, and West Virginia. Five hundred eightyfour sewage treatment plants discharge greater than 0.5 million gallons per day (MGD) into the Bay system. Although many smaller plants are operational throughout the Bay region (approximately 400 in Maryland alone), plants with discharge rates in excess of .5 MGD represent approximately 96 per cent of all plants.

Total average daily flows in MGD are listed in Table 26 for selected treatment plants in the Bay region for the years 1980 and 1981. Twenty-two plants with discharge rates in excess of 10 MGD are ranked according to discharge rate.

Thirteen plants showed decreases in flow from 1980 to 1981. The flow decreases ranged to 45 per cent below the 1980 values with an average decrease of 13.2 per cent.

Six plants showed increases in flow from 1980 to 1981. Flow increases ranged to 7 per cent with an average increase of 3.1 per cent.

Sewage Treatment Plant	Rank	Drainage Basin	Flow 1980	(MGD) 1981	% Change of 1980 Flow	
Blue Plains	1	Potomac	317.00	324.00	+2.0	
Back River	2	Upper Chesapeake Bay Delmarva	80.60	64.00	-20.6	
Richmond	3	James	61.03	63.00	+3.2	
Wyoming Valley Sanitary Authority	4	Susquehanna	40.00	31.5	-21.2	
Hopewell	5	James	33.63	31.85	-5.3	
Patapsco	6	Upper Chesapeake Bay Delmarva	30.00	24.90	-17.0	
Blue Plains Bypass	7	Potomac	27.60	15.30	-44.6	
Alexandria	8	Potomac	26.96	28.93	+7.3	
UPRC Waste water treatment plant	9	Potomac	22.40	21.50	-4.0	
Arlington Co.	10	Potomac	22.27	22.20	-0.3	
Lower Potomac	11	Potomac	22.20	22.36	+0.7	
Scranton Sewer Authority	12	Susquehanna	21.20	20.20	-4.7	
Lamberts Point	13	James	20.63	21.30	+3.2	
Harrisburg	14	Susquehanna	20.45	19.60	-4.1	
Bing John City	15	Susquehanna	19.99	14.00	-30.0	
Chesapeake-Elizabeth	16	James	19.70	19.99	+1.4	
Boat Harbor	17	James	17.60	17.55	-0.2	
York Water Pollution Control Center	18	Susquehanna	16.25	16.00	-1.5	
Piscataway	19	Potomac	15.00	13.90	-7.3	
Western Branch	20	Upper Chesapeake Bay Delmarva	13.90	9.91	-28.7	
James River	21	James	13.70	13.90	+1.4	
Army Base	22	James	12.38	11.53	-6.9	
1980 Data from EPA Chesapeake Bay Program database						

Table 26. Average daily discharge of selected sewage treatment facilities, Chesapeake Bay region, 1980-1981.

ACKNOWLEDGEMENTS

Many organizations and individuals contributed information and guidance toward the preparation of this assessment. The cooperation offered by the following is particularly noteworthy:

Army Corps of Engineers, Baltimore District Chesapeake Bay Economic Evaluation Branch Navigation Branch Baltimore Maritime Exchange Chesapeake Research Consortium EPA/Chesapeake Bay Program, Annapolis Hampton Roads Maritime Association Johns Hopkins University/Chesapeake Bay Institute Maryland Department of Environmental Programs Maryland Department of Natural Resources Natural Resources Marine Police Parks and Recreation Tidal Fisheries Maryland Highway Toll Administration Maryland Pilots Association Maryland Port Administration Maryland State Climatologist - Mr. J. Moyer Maryland State Police Maryland Steamship Trade Association NASA/Goddard Space Flight Center NOAA/National Earth Satellite Service NOAA/NAVY Joint Ice Center NOAA/National Marine Fisheries Service Resource Statistics Division NOAA/National Ocean Survey Tidal Datums Branch NOAA/National Weather Service Baltimore Weather Service Field Office Washington Weather Service Field Office Norfolk Weather Service Field Office Potomac River Fisheries Commission T. L. Courtney, Independent Commercial Fisherman University of Maryland Chesapeake Biological Laboratory Horn Point Laboratory Office of Sea Grant U.S. Coast Guard Group Baltimore Group Eastern Shore Group Hampton Roads Pollution Information Reporting System Baltimore Safety Office Public Affairs Office District Office - Hampton Roads

U.S. Geological Survey Virginia Polytechnic Institute Virginia Water Control Board Virginia Institute of Marine Sciences Virginia Marine resources Commission Weather Observers Aberdeen Airport Capitol City Airport